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ABSTRACT

The principal result of this paper is that the convex combination of two positive,
invertible, commuting isometries of L _(X, F,1t)1 < p< + o0, one of which is
periodic, admits a dominated estimate with constant p/p—1. In establishing
this, the following analogue of Linderholm’s theorem is obtained: Let o and ¢
be two commuting non-singular point transformations of a Lebesgue Space
with 7 periodic. Then given ¢ > O, there exists a periodic non-singular point
transformation ¢’ such that ¢" commutes with = and ;z(x:o'x;éax} <& Byan
approximation argument, the principal result is applied to the convex combi-
nation of two isometries of LP (0, 1) induced by point transformations of the
form tx = xx, k>0 to show that such convex combinations admit a domina-
ted estimate with constant p/p—1.

1. Introduction

In what follows we assume p fixed, 1 < p< + 0. Let (X, %, ) be a o-finite
measure space, and let T be a linear operator mapping L, (X,#,p) into
L(X,,p). If there exists a constant ¢ >0 such that

fsup (mp’ S+ 1 Pif_t*ﬂ
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for each fe L (X, %, ), then we say that T admits of a dominated estimate with
constant c. If | Tf |, = | f], for each fe L(X, #,u), then we say that T is an
isometry. If T maps non-negative functions to non-negative functions, then we

P
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say that T is positive.

Our main result is that a convex combination of two positive, invertible,
commuting isometries, one of which is periodic, admits of a dominated estimate
with constant p/p — 1. To establish this, we will prove an analogue of Lin~
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derholm’s Theorem to show that if 7, and 7, are commuting non-singular point
transformations with 7, periodic (see Section 2 for definitions), then for every
&> 0, there exists a periodic non-singular point transformation t, such that t,
commutes with 7, and p{x: 7,x # t,x} <e¢. In Section 3, we apply the principal
result to show that a convex combination of isometries of L,(0,1) of the form
Tf(x) = f(x*) - (kx*~1)1/? admits of a dominated estimate with constant p/p — 1

2. An analogue of Linderholm’s theorem

In this section we will assume that (X, %, 1) is a Lebesgue space, i.e., that it is
separable, complete, non-atomic, and u(X) = 1. Let 7 be a point transformation
of X into itself. If ¢ is one-to-one, measurable in the sense that t4e % if and
only if Ae &, and if p(t4) =0 if and only if u(4) =0, we say that t is non-
singular. If there exists an integer N such that for almost all xe X we have
7"x = x, we say that 7 is periodic. If there exists an integer n such that for almost
all x belonging to a set A we have t"x = x, where n is the least such integer, we
say that 7 has period n on A.

The main result of this section is the following:

THEOREM 2.1. Let T and ¢ be two non-singular point transformations of the
Lebesgue space (X,&F,u) with t© periodic. Then given ¢ >0, there exists a
periodic non-singular point transformation o of (X, F, 1t) such that * commutes
with 1 and

pu{x:olx # ox} <e.

This is a generalization of Linderholm’s approximation theorem:

LINDERHOLM’S APPROXIMATION THEOREM. Let ¢ be a non-singular point
transformation of the Lebesgue space (X, %, 1) and let ¢ > 0. Then there exists a
periodic point transformation t such that

p{x:1x # ox} <e.

In [3], p. 71, there is a proof of this theorem in the measure preserving case
that is easily adaptable to the non-singular case.
The bulk of the proof of Theorem 2.1 is contained in the following three lemmas.

LemmA 2.1.  Let 7 and o be two commuting non-singular point transforma-
tions of the Lebesgue space (X, %, u) such that t is periodic with period n and ¢
is anti-periodic. Then for every integer m, there exists a measurable set A of
positive measure such that the sets
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A, 04, , 6" 14,1A, 014, -, 6" 14,---, 7" 1A4,61" 4, -, 6" "4
are all disjoint.

Proor. We show that if k <n — 1, the existence of a set A,_, of positive
measure such that the sets
Y PP 7. WRSTRIEN . WP 7 PPN % PPPLIN e 7 MEPREE

i m-—1 k-1
T lAk_l, O'TAk_l,"',O- TAk_l,"',T Ak—l’
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are all disjoint implies the existence of a set A, of positive measure such that
Ay 0™ AL 1A, o, 0" LAy, o, TR Ay, o, 0™ 14, are all disjoint. This will
establish the lemma by induction since Linderholm’s approximation theorem
yields the existence of A

We proceed in two steps:

(i) We show the existence of 4,_, implies that there exists a subset B of 4,_,
of positive measure such that 1*B,B,¢B,---, ¢™ !B are all disjoint. This also
implies that 7B, B,¢B,---,6™ !B, 1B, ---,6™ 1tB,--,7*"1B,-..,6™ " 17*"1B are all
disjoint.

(ii) We show that the existence of a set B such that B,oB, ---,¢"™ " 1B,..-,7* 1B
e, 0™ 171 7*B, ... ¢! "11* B, 1 < | < m, are all disjoint implies the existence of

2

a subset C of B of positive measure such that C,---,¢™ " 1C,---,¢™ 1¢*71C, 7*C
«++,6'717%C, 6'1*C are all disjoint. This and (i) implies the existence of 4,.

In both (i) and (ii), we use the fact that if two transformations ¢ and t are such
that 6(A) = 1(A4) (modulo a null set) for every A € #, then ¢ and t are the same
almost everywhere. To see this, note that o(A4) = 1(4) (modulo null sets) implies
that 77 1¢ is equal to the identity as a set transformation (modulo null sets), and
hence is a measure preserving transformation. But since (X, #, 1) was assumed
to be a Lebesgue space, this implies that ™ 1o is isomorphic to the identity point
transformation (see [3], or [1,pp. 69-70]).

(i) That = is periodic and ¢ antiperiodic implies that there exists a subset B, of
A, such that u(z*B,;AB,) # 0. If u(B, — ©*B,) # 0, put C; = B, — *B,. Other-
wise, put C; =1t %(t*B; — B,). Then C, and 7*C, are disjoint. Since 7 is non-
singular, we have u(C,) > 0.

Continuing by induction, suppose we have a subset C; of 4,_, of positive measure
such that C,,6C;,+++,6'1C;, 7C;, i < m, are all disjoint. Since ¢ is antiperiodic,
there exists a subset B;, ; of C; of positive measure such that u(¢'B,, 1A7*B;, ) # 0.
If w(6'B;y; —7B,,)#0, put C;yy=0"0'B;y, — 1°B;;,). Otherwise, put
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Ciyy =7 X(**B;y, — 06;B;41). Since 7 and ¢ are non-singular, u(C,,,)> 0.
(1) is established by putting B =C,,.
(ii) The only place o(c'~!7*B) can intersect

( U o't B ) U ( lUl ajr"B)
ison U";o 7'B. Since ¢ and T commute, this intersection must also be restricted to
U, o ¢'B. Since 7 is periodic and ¢ is antiperiodic, there must exist a subset G
of B of positive measure such that u(GAt*¢'G) # 0. If (G — 7*¢'G) # 0, put
C = G — 7%¢'G. Otherwise put C =17 % ~'(t*¢'G — G). Again, that ¢ and 7 are
non-singular implies u(C) > 0.

We remark that the above proof applies to any pair of commuting point trans-
formations such that for every pair of integers k, L0 < k< m, 0= 1< n, ki#0,we
have p{x:t*x =0o'x} =0, p{x:*x = x} =0.

LEMMA 2.2. In Lemma 2.1, the set A (for a fixed m) may be chosen to be
maximal in the sense that if A< B, u(B)> u(A), then there exist i,jk,l,
1fign—-1, 12j<n-1, 12km—1, 151<m—1, such that
u(v's* B[\ v'a'B) > 0, where either i# j or k # I, or both.

Proor. Consider the family of collections &/ of sets E,, where E, e %

{(E) >0, and
Tve'E, T6'E
(0 (75 -2
03jim 05jSm—1

for a # . Partially order such &/’s by inclusion. The Hausdorff maximal principle
yields a maximal collection 7,. Since u(X) < oo, &7, contains at most a countable
number of sets; thus A =U E,eu, Bz € F. Finally, suppose B o 4, u(B) > u(4),
and B,oB,-,6™" *B,1B,01B,---,¢" " !tB,--,7" 'B,g1""'B,---,¢™ " 17" 1B are all
disjoint. The collection &7, = .xzi,,U{B — A} is again of the sort considered and
properly majorizes &7,, contradicting the maximality of &7,.

Lemma 2.3. Let t and o be two non-singular point transformations of the
Lebesgue space (X, %, i), where t has period n and ¢ is antiperiodic. Then given
an integer m and ¢ > 0, there exists a measurable set F of positive measure such
that the sets F,oF,---,6" 'F, 1F,a1F,---,¢™ tF,---,7""'F, ¢t""'F,---, 0™ !
"~ 1F are all disjoint and
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" (X - OSiLSJm_ITjO'iF) <eé.
05jsn—1

Proor. Choose an integer p so large that 1/p <& By Lemma 2.2, choose a
maximal set A of positive measure such that the sets 4,04, -,6™°"14,74,014
e, P TTA, T T4, 017 A, -, 0™P T 17T L4 are all disjoint.

Since o and © commute, if B is a subset of 6™~ 17’4, 0 < i < n — 1 such that
0"B is disjoint from

c= |J o4,

0gismp-1
0<jsn—1

then for every j, 0 Sj<n—1, ¢*/B is disjoint from C. Therefore, there can
exist no subset D of |_J/Zg0™ 7/ of positive measure such that ¢*D is disjoint
from Cforall k, 1 £ k < 1 where I > mp — 1, for otherwise a(Dﬂo’"’" ~14) would
provide a way of enlarging A, which contradicts the maximality of A.

Let E;, be that subset of 7'4, 0 £ i <n— 1, such that k is the least positive
integer such that ¢*+™~LE, intersects C (and hence ( J;Z,7'4). For each i,
1<ign—1, p('A-(Ji™®Ep) =0, for otherwise o™ "(4 —|JiiEo) = D,
would be a set of positive measure such that D,, ¢D,,-,6™ " 1D{,1Dy,07Dy,
6™ "Dy, -, " 1Dy, 01" 1Dy, -+, 6™ 1" 1D, would be disjoint from each
other and from C, so that D, would provide a way of enlarging A4, again con-
tradicting the maximality of A.

Thus u(X — C) = 0, since we now have that C is invariant under z and o; for
otherwise we could find a subset 4, of positive measure of X — C with the same
property as A which would contradict the maximality of A.

Put
n~1 mp+k—2 .
Sp = Lg Ey, Gy = U 6'Sps
i= i=0
im—1 k -2
Hlk = U O'jSk I < [mp + ]
i=GES1)m m
m~—~ 1
k k-2
_ oS, [mp + ]
j=@-1 m

where [x] is the largest integer < x.
Now for every k, at least one of the H;, has measure less than p~'u(G,), since
there are at least p H;,. Choose one of these, H,, say. Put
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p+I(k+1)/m]-1

-2
Fk — (U o,imEOk) U( U a,(i+l—1)m+tE0k)
i=0 i=0

where t =k — 1 — m[k — 1/m]. Note that F, is constructed by taking E,; and
each ““mth’’ iterate under o of E,, until one iterate is contained in H,_; ;. We then
add to F, all the ““mth”’ iterates under ¢~ * of ¢™?~1+¥~1E,, until one of these
iterates is contained in H, . Thus the sets F, 0Fy, -+, 6™ 'F}, tF}, 0TFy, -+, 6™ " 1TF,,
o, TR, 0T F, -, 6™ T 1" T LF, are all disjoint, and if

U= U vo'F

0sisSm-1
0=jgn—1

G.—Ude Hl,k-
If F=U,'¢"£1Fk, then F,cF,.--,6™ F,1F,01F,---, 6" 1tF, .-, 7" 'F, o1" 'F,
-+, 6™ 1"71F are all disjoint, and
(J o'F s 1 (G
u(— a‘r)é — Gy <e.
k=1 P Q.E.D.
ProoF or THEOREM 2.1. We first note that since 7 and ¢ commute, the sets
on which either 7 or ¢ has period k, for any integer k, are each invariant under
both 7 and o. Let n be the least integer such that t"x = x for almost all x € X. If we
normalize those sets of positive measure A4, where 7 has period k < n and show
there exists g; defined on A4, such that o; commutes with t and g, {x: o} x # ox}

< g, where g, is u normalized so that A4, has measure one, then we may define ¢!
to be o; on A,, and have that ¢! commutes with 7 and

p{x:olx#ox} = X p{x:xedpox #ox} < X ep(A) <e
k k

where the sums extend over all k such that 4, is defined. Thus we may assume
without loss of generality that 7 has period n.

Let B, be the set on which ¢ has period k. Since p(X) =1, there must exist
integer N such that u(>yB,) < &/2. Define ¢* to be 6 on B,, 1 £k < N, and
the identity on B,, k > N,

Let m be an integer such that 1/m < ¢/4, and choose 6 > 0 such that for every
measurable set A4 with u(4) <, we have ,u(AUa"AU---Ua'"'A) < g/4.
W=(X- U,‘f= 1By) is invariant under both 7 and o. If w(W) > 0, we may apply
Lemma 2.3 to find a subset 4 of W such that the sets 4,04, ---,6" 14,714,014
e, 0™ 74, -, 1" A, 07" 14, -+, 0™ 1" 14 are all disjoint and
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p=W- |J 14

has measure less than 8. At least one of the sets C, = Ui";(,lo"r ‘A has measure less
than 1 /m, C, say. Put B=0¢"™"'"Y4, Then the sets B,oB,---,6" B, B, 1B,
vr,¢"™ 17B, .., 7" 1B, 07" 1B, ---,¢™ 17"~ 1B are all disjoint, Ul se™ 7iB=C,
and

E=W- U ti6'B <« CJ o~ 'D.
§§

—1 i=0

Ill\lll\

We define ¢! on W by
olx = ¢”™"x xe(
= X xcE

= 0X otherwise.
Then

u{x=GIX#GX}=#(Cz)+u(E)+u( Y Bk)
k=N
1 T e & e &
<;n—+,u{igo D}+7<T+—4_+—2_—8'

Also, ¢! commutes with 7, since ¢! is the identity on E which is invariant under t,
and for xe C;, 6™ ™x EU, ot'B, 50 6 ™x = 167 "x.

3. Principal result

Recall that we have assumed p fixed, 1 < p < + 0. If T is a linear operator of
L,(X,#,p) with norm less than or equal to one, we say that T is a contraction.
If there exists he L(X,%,u), h>0, such that Th=h, we say that T has a
positive fixed point. In [2], it was shown that positive contractions of Ly(X, %, p)
having a positive fixed point admit of a dominated estimate with constant p/p — 1.
This result implies the following lemma.

LemmA 3.1. If T, and T, are commuting periodic positive invertible
isometries of LX,%,p), then T =oT; +(1 —a)T,, 0<a <1, admits of a
dominated estimate with constant p/p — 1.

Proor. Since 0 < a < 1, we have that T is a positive] contraction of L (X, &, u)
That T, and T, are periodic implies that T'; and T, have positive fixed points, h,
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and h, say. Let n be the period of T;, m the period of T,. Since for every integer k
we have Tth, is a fixed point of T, and TFh, is a fixed point of T',, we have that

h = h1 + Tlhl + A + T,;_l hl + h2 + Tth + .- + T;'_lhz
is a positive fixed point of both T'; and T,. Hence  is also a positive fixed point
of Ty and T admits of a dominated estimate with constant p/p — 1.

It is a result essentially due to Banach that the positive invertible isometries of
L,(X,%,u) can be represented in the form

>

dpo T\?
77 = (o) (%427
where fo T means (fo1) (x) = f(tx), uot is the measure defined by (u o 7)(4)
= u(tA), and where 7 is a non-singular point transformation of L,(X, %, u) (see
[4]). In order to apply the results of the previous section, we prove the following
two lemmas to show that if T is periodic then so is its associated point trans-
formation, and that if two positive invertible isometries commute, so do their
associated point transformations.)

LemMA 3.2. Let T be a periodic positive invertible isometry of L (X, #, p),
where (X, %, 1) is a Lebesgue space. Then T is of the form

e ()"

where T is a periodic non-singular point transformation of (X, %, u).

Proor. For every A €% and positive integer k, we have

duot* ) duort (du or")
o} du = otd(nor
[ (Faor) Stan = | (F5) ondtuen

dportt .
= ———dp = o1(tA).
L qp R=H (z4)

Therefore, we have that

du g~ du

k (k+1)
(dp o1 or) dpot dpot
and by induction,

du o 7\'/?

ry=got (Y57
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Let T have period n. Since p(X) < c0,1€ L(X, %, ) and T*(1) = (dp o t"[dp)*/?
so for every Ae F, T"(x,) = (40 7") = )4, s0 that (X, F, 1) a Lebesgue space
implies t"x = x for almost every x.

LeMMA 3.3. Let T, and T, be two commuting positive invertible isometries
of L(X,%,u) of the form,

T.f =(fo n)(

dﬂorz) lr

duoc 11)

T,f=(forty) (

where 1, and 7, are non-singular point transformations of the Lebesgue space
X, #,1). Then t, and t, commute.

Proor. First note that for every Ae &

dpot duot
J; m 2 o1,dpo Ti:ﬁm m 2 du = (1,7, A)

that so

duot, du o 1,74
O'rl = — .
du dpot,

and

UOT, duorl) (du 01211)1“’
T,T 0T,07T o =(fo1,t ,
1T2f =(for, 1)( du T2° dp (foraty) i

and similarly
i/p

dp 0 T,T,)
T2T1f=f°"711~'2(—“"d”1 2)

Now p(X) < w0, so 1€ L(X,%,p) and since T, and T, commute, we have

dpotyty  dpuott,
du  du

Therefore, if f=1yx,, Ae%, we have

X‘ntzA sznA’

for almost all x € X, so that (X, #, u) a Lebesgue space implies 7,7,x = 7,7,x for
almost all xe 4.
We now prove our main result. Note that the restriction that u(X) < oo that
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is inherent in the assumption that (X, %, pu) is a Lebesgue space can be lifted by
considering operators of the form T, f = y,, * (T(x4.f)), #(4,) < 0, lim,_, , 4, = X.

THEOREM 3.1. Let (X, %, u) be a Lebesgue space and let T be a contraction
of L(X,%,u) of the form

Tf =aT,f+ (1 —a)T,f, O<ax<l,

where T, and T, are commuting positive invertible isometries of L(X, %, y)
and T is periodic. Then T admits of a dominated estimate with constant
plp—1.

Proor. We may write

duo 1/p
T.f=(fory) ( ”dﬂrl)

i/p
Taf = (fom) (422)

where 7, and 7, are non-singular point transformations of (X, #, u). By Lemma 3.2
74 is periodic, and by Lemma 3.3 7; and 7, commute. Hence, we may apply
Theorem 2.1 and for every ¢ >0, find a non-singular point transformation z,
such that

uxitx #T,x} <6

and 7, is periodic and commutes with 7,. By Lemma 4.2 of [2], the positive
invertible isometry of L (X,#,p) defined by

T.f=(for,) (dudzte)llp

is periodic, so that by Lemma 3.1, the contraction u, of L (X, #,u) defined by

.= aTlf + (1 - a)Tef

admits of a dominated estimate with constant p/p — 1.

Now the operators T, approximate T, in the strong operator topology (see
[4]), so the operators u, approximate T in the strong operator topology. The
theorem now follows since if {T',} and T are operators of L,(X, %, u) such that
{T,} converges to T in the strong operator topology, and such that each T,
admits of a dominated estimate with constant ¢, then T admits of a dominated
estimate with constant ¢ as well.
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4. An application

In this section we show that the convex combination of two positive invertible
isometries of L,(0, 1), which are induced by point transformations 7, defined by
7% = x*, admit of a dominated estimate with constant p/p — 1. Here we cannot
use Theorem 3.1 directly, because such isometries are not periodic. However
Lemma 4.1 will show that we can approximate the two isometries simultaneously
with positive invertible isometries that commute and such that one of them is
periodic.

LemMA 4.1. Let 7 and o be two non-singular point transformations of
(0,1). If = and o are of the form
ox = x*
x=x, k#l

where k and | are positive real numbers, then given ¢ > 0, there exists non-
singular point transformations t, and ¢, such that ©, and oy commute,

w{x:ox #£ox}<e
pl{x:1x # X} <sé,
and one of t,,0, is periodic.

Proor. We will show that if k> 1, [ > 1, then there exist commuting trans-
formations 04,7, such that

p{x:0.x # ox} <e
p{x:o7x# o7 x} <e
Mxitmx#£x}<e
p{xiriix £t x) <.

This will establish the assertion, since if k, say, is less than 1, we may approximate
o~ 1and 7 in this fashion by ¢, and t and have o; ' commuting with 7,0, !

periodic if o, is, and

p{x: o7 x # ox} <e.
Since k # [, we will assume with no less of generality that [ < k. Let ¢ be a positive
real number less than 1 and such that 1 — ¢* < /2. Choose an integer n such

that ¢*"”' < ¢/2. Denote by 4 the interval (c*, 1), by B the interval (0, ¢*"), and by
D, the intervals (¢,c”"). Note that for every i <n, ¢D; = D,,,. Then for
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every i, we have ©(D;) < D[\ JD;y, for every i <n since ©(D)) = (¢, *")

c (@, ¥y =D, UD,“. For every m, 1<m<n, put E,=D, — 1t 'D,
and F,, = D,, — 1D,,. Since 7 and ¢ commute, we have 6E, =E, ., 6F,, = F,
for every m < n. Define 7, by

;X = ¢ ™Mo x x€E,
= x xedlJB
= 17X otherwise
and o, by
o;x = a " xeD,
= X xeA UB
= oXx otherwise.

Then o, is periodic, and the following remarks show that 6, and t, are well
defined and commute, establishing the assertion.
1) tE,., = F,, 1" "F,=F,, so 1, is well defined.

2) If x e A{BJ(#=7Dy), there is nothing to prove.
3) If xe(D,..; — E,_,), oxe(D, — E,), again there is nothing to prove.

4) If xe(D, — E,), 6,1x = ¢ *1x, 16X = 10" "x = ¢ "x.
5) Ifx€E,_y,0x€E,, txeD,, and

T,0,X =1,0Xx =0 "0 1x=0""1x,

0yT1X = 0(IX =0 "X.
6) If xeE,, t;xe D, and g,7,x = 6(6™ "0~ 1x) = 6 "X, 7,0,x = 16~ "X.
THEOREM 4.1. Let T be a contraction of L,(0,1) defined by

Tf =0(T1f+(1 _'a)Tzf, 0<0(< 1,

where T, and T, can be represented by

Tf () =f(*) (k™ HY?, i=1,2.
Then T admits of a dominated estimate with constant p[p — 1.
Proor. If k; = k,, the theorem follows from [4]. Otherwise, by Lemma 4.1 we
may approximate T, and T, in the strong operator topology by positive in-

vertible isometries T,,, and T,,, such that T,,, and T, , commute and one of
them is periodic. By theorem 3.1, the contractions T,=aT; ,+ (1 —-)T,,



Vol. 11,1972 DOMINATED ESTIMATES 13

admit of a dominated estimate with constant p/p — 1. But the contractions T,
approximate T in the strong operator topology, so T admits of a dominated
estimate with constant p/p — 1.
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